Towards Measuring Low-Earth Orbit Network Performance

Debopam Bhattacherjee Microsoft Research

bdebopam.github.io

Agenda

- What is the LEO hype about?
- Understanding LEO networks
- LEO topology design
- LEO simulations
- A global testbed & beyond

Tens of thousands of satellites

SpaceX Starlink 42,000 planned

Telesat, OneWeb, LinkSure, Astrome, GuoWang, ...

Amazon Kuiper

SpaceX Starlink

• **3K+** in orbit [Largest]

- Services in 40 countries
- Soon to use Starship (~400 sats/launch) instead of Falcon 9 (60 sats/ launch)

Isn't satellite networking old?

- Scale: 10s → 10,000s
- Goals: niches → global broadband
- Dynamics: $GEO \rightarrow LEO$

Recent advances

10-20G / up to 8000 km

Global low-latency Internet coverage

- **3.7 billion (49%)** people still not online.
- 607 million people reside in areas with no mobile data coverage.
- > 5 billion people more than 10 km away from any fiber optic cable infrastructure.
- **1.6 billion** students (**99%** of students in low and middle-income countries) affected by school closures in 2020.
- < 1% of Africa's retail sales are made online although there exists a huge market.
- 90% of the Earth's surface does not have any connectivity although **75 billion** IoT devices are expected to come online by 2025.

Agenda

- What is the LEO hype about?
- Understanding LEO networks
- LEO topology design
- LEO simulations
- A global testbed & beyond

1. Altitude

GEO 35,768 km ~238.4 ms RTT

-

LEO 550 km 3.7 ms RTT

2. Inclination

Polar orbits

2. Inclination

Polar orbits

90°

Inclined orbits

11

3. Connectivity

+Grid

12

4. Latency

satellites

Today's Internet

150 200 250 300 350 400 450 City-city RTT (ms)

14

5. System dynamics

Recife, Brazil

Dakar, Senegal

> 450 km / min

Agenda

- What is the LEO hype about?
- Understanding LEO networks
- LEO topology design
- LEO simulations
- A global testbed & beyond

"Internet from Space" without Inter-satellite Links?

Yannick Hauri, Debopam Bhattacherjee, Manuel Grossmann, Ankit Singla ETH Zürich HotNets'20

17

FCC specification

presumptively acceptable risk and encourage "design for demise," i.e. designing spacecraft so that they burn up completely upon re-entry into the Earth's atmosphere,⁴⁵⁰ but maintain the possibility for approval

No mention of silicon carbide component

18

Earth's surface

Earth's surface

GT

GT

Earth's surface

ISL versus BP

- Latencies and variations thereof
- Impact on network-wide throughput
- Resilience to weather

ns thereof e throughput

High latency variations in BP

Sparser air traffic over South Atlantic

 Inflation of ~100 ms
North Atlantic paths get congested

Impact of weather

Starlink deploying ISLs

'space laser' satellites

Uncertainties

- ISL capacities?
- Pointing, acquisition, and tracking
- Topology
- OneWeb's no-ISL design

Network topology design at 27,000 km/hour

Debopam Bhattacherjee, Ankit Singla Department of Computer Science, ETH Zürich

Network topology design at 27,000 km/hour

Debopam Bhattacherjee, Ankit Singla Department of Computer Science, ETH Zürich

27

Key constraints

System dynamics

Link setup times

Max. no of links per satellite

Assumptions

• Given satellite trajectories Traffic matrices drawn from intuition • +Grid is the baseline

• Ground-satellite connectivity is range-bounded

+Grid

Can use much longer links

5014 km inter-satellite link

550 km altitude 🔶

Mesosphere (up to 80 km)

31

Much larger design space

What do we optimize for?

Traffic matrix

City 2

Traffic ~ Population product GDP

City 3

$M = \alpha$ Stretch + Hop count

Hop count

Why aren't obvious / traditional methods enough?

Why not use Integer programming?

For 1000 cities, would take ~10²⁹ days One minute apart ~91% links are different

ISL setup times: few seconds to 10s of seconds

Why not use random graphs?

In 5 mins, 19% of links become infeasible Cannot optimize for arbitrary objectives

Random graph

Hop-count

Our approach

Constellations explored

 Uniform 40x40 (40²) 53° inclination, 550 km altitude SpaceX Starlink Phase 1 (24x66, 53°, 550 km) • Amazon Kuiper Phase 1 (34², 51.9°, 630 km)

44

A large number of design points

Avg. Hop-count

+Grid is a low-efficiency motif

Avg. Hop-count

More options at higher latitudes

Avg. Hop-count

Performance improvements

Starlink 54% 40%

Kuiper 45% 4%

402

48% 7%

Severely power-limited links

How do we

- **Trajectory &** topology design Routing Transport Apps
- ... pick satellite trajectories to serve target areas? ... connect satellites to offer high network performance? ... route efficiently within a constellation? ... integrate such networks into Internet routing? ... do efficient congestion control on such networks? ... design applications that run on top?

55

Agenda

- What is the LEO hype about?
- Understanding LEO networks
- LEO simulations
- A global testbed & beyond

Exploring the "Internet from space" with HYPATIA

Simon Kassing*, Debopam Bhattacherjee*, André Baptista Águas, Jens Eirik Saethre, Ankit Singla ETH Zürich

Hypatia A simulation and visualization tool for satellite networks

*equal contribution

IMC'20, **Best Paper**

Satellite trajectories Network topology **Ground stations** Traffic flows

Experiment setup

First shell of Kuiper

- 630 km height
- 34 orbits, each with 34 satellites
- 51.9° inclination

Connectivity is +Grid, routing is shortest path Ground stations in top-100 most populous cities All links are 10 Mbps

RTT fluctuation: Rio de Janeiro to St. Petersburg

This is without any other traffic in the network

RTT fluctuation: Rio de Janeiro to St. Petersburg

This is without any other traffic in the network

Impact on loss-based CC is small

This is without any other traffic in the network

Rate (Mbps)

Delay-based CC suffers

This is without any other traffic in the network

Rate (Mbps)

RTT variation and congestion control

- RTT changes can hamper delay-based CC Loss-based CC is also problematic
 - Typically, able to maintain high rate
 - But unlucky flows can suffer

Path structure change has network-wide impact

Few link changes per city-pair per minute But large number of changes network-wide An uncongested link can suddenly see added traffic

Cross-traffic

Unused bandwidth (Mb/s)

Cross-traffic

Unused bandwidth (Mb/s)

Cross-traffic

Unused bandwidth (Mb/s)

Hypatia is only the first step in building up research infrastructure for a new breed of networks

Agenda

- What is the LEO hype about?
- Understanding LEO networks
- LEO simulations
- A global testbed & beyond [CCR'21; A Singla]

Starlink Beta performance reports

Performance varies with

Time

Location

Deployments

Low-latency application QoE

- Low-latency application QoE
- Latency fluctuations due to LEO dynamics

20E to

Starlink S1 from Delhi

50x faster than real-time

- Low-latency application QoE
- Latency fluctuations due to LEO dynamics
- Congestion control evaluation

Rate (Mbps)

- Low-latency application QoE
- Latency fluctuations due to LEO dynamics
- Congestion control evaluation
- Multi-access connectivity

79

- Low-latency application QoE
- Latency fluctuations due to LEO dynamics
- Congestion control evaluation
- Multi-access connectivity
- Impact of weather, geometry, long-term evolution, etc.

20E to

Current participation

- Microsoft Research
- Azure Space
- Univ. Surrey
- Telefonica

Let's join hands!

- Reach me at debopamb@microsoft.com
- For LEOCONN WS, subscribe mailing list: https://aka.ms/subscribe LEOCONN

