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• What is the LEO hype about?
• Understanding LEO networks
• LEO topology design
• LEO simulations
• A global testbed & beyond

Agenda
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SpaceX Starlink 
42,000 planned Amazon Kuiper

 Telesat, OneWeb, LinkSure, Astrome, GuoWang, … 

Tens of thousands of satellites
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• 3K+ in orbit [Largest]
• Services in 40 countries
• Soon to use Starship 

(~400 sats/launch) instead 
of Falcon 9 (60 sats/
launch)

SpaceX Starlink
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• Scale:  10s → 10,000s
• Goals:  niches → global broadband
• Dynamics:  GEO → LEO

Isn’t satellite networking old?
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🛰

🛰 10-20G / up to 8000 km

Recent advances
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• 3.7 billion (49%) people still not online. 
• 607 million people reside in areas with no mobile data coverage. 
• > 5 billion people more than 10 km away from any fiber optic 

cable infrastructure. 
• 1.6 billion students (99% of students in low and middle-income 

countries) affected by school closures in 2020. 
• < 1% of Africa’s retail sales are made online although there exists 

a huge market. 
• 90% of the Earth’s surface does not have any connectivity 

although 75 billion IoT devices are expected to come online by 
2025.

Global low-latency Internet coverage
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• LEO topology design 
• LEO simulations
• A global testbed & beyond

Agenda

8



1. Altitude 🛰

🛰
LEO 
550 km 
3.7 ms RTT

GEO 
35,768 km 

~238.4 ms RTT
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Polar orbits

2. Inclination
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Polar orbits

2. Inclination

Inclined orbits

53°90°
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3. Connectivity
+Grid  
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4. Latency
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> 450 km / min

Recife, Brazil

Dakar, Senegal5. System dynamics
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HotNets’20



FCC specification

• No mention of silicon carbide component
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Bent-pipe connectivity (BP)
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TS Earth’s surface
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TS

Bent-pipe connectivity (BP)

Earth’s surface
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ISL versus BP

• Latencies and variations thereof 

• Impact on network-wide throughput 
• Resilience to weather
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High latency variations in BP

Satellite
Ground Terminal
Aircraft

Maceió

Durban

RTT: 175 ms

RTT: 75 ms • Inflation of ~100 ms 
• North Atlantic paths 

get congested

Sparser air traffic over 
South Atlantic
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Impact of weather
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TS

GT
GT

GT
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Starlink deploying ISLs

• ISL capacities? 

• Pointing, acquisition, and tracking 

• Topology 

• OneWeb’s no-ISL design
26

Uncertainties
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CoNEXT’19



System dynamics

Key constraints
Link setup times

Max. no of links 
per satellite
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Assumptions

• Given satellite trajectories 

• Traffic matrices drawn from intuition 

• Ground-satellite connectivity is range-bounded 

• +Grid is the baseline
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+Grid
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Mesosphere 
(up to 80 km)

550 km altitude
5014 km inter-satellite link

Can use much longer links

31



Much larger design space
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What do we optimize for?
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City 1

City 3

City 2 Traffic ∝ Population product

Traffic matrix

GDP
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M = 𝜶 Stretch + Hop count

Metrics

LSat

LGeodesic

Stretch = 
LSat

LGeodesic

Hop count
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Why aren’t obvious / traditional 
methods enough?
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For 1000 cities, would take ~1029 days 

One minute apart ~91% links are different

Why not use Integer programming?

37

ISL setup times: few seconds to 10s of seconds



In 5 mins, 19% of links become infeasible 

Cannot optimize for arbitrary objectives

Why not use random graphs?

Stretch

Hop-count

Random graph
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Our approach
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pexels.com

http://pexels.com


pexels.com

http://pexels.com
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Constellations explored

• Uniform 40x40 (402) 53° inclination, 550 km altitude 

• SpaceX Starlink Phase 1 (24x66, 53°, 550 km) 

• Amazon Kuiper Phase 1 (342, 51.9°, 630 km)
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🛰

🛰
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Starlink

Kuiper

402

Severely power-limited links

40%

4%

7%

Performance improvements

45%
48%

54%
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… pick satellite trajectories to serve target areas? 

… connect satellites to offer high network performance? 

… route efficiently within a constellation? 

… integrate such networks into Internet routing?  

… do efficient congestion control on such networks? 

… design applications that run on top?
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Transport

Apps

Trajectory & 
topology design

Routing

How do we
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IMC’20, 
Best Paper

A simulation and visualization  
tool for satellite networks

Hypatia

*equal contribution



Satellite trajectories 
Network topology 
Ground stations 
Traffic flows
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First shell of Kuiper
• 630 km height
• 34 orbits, each with 34 satellites
• 51.9° inclination

Connectivity is +Grid, routing is shortest path
Ground stations in top-100 most populous cities
All links are 10 Mbps 

Experiment setup
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6161



 0

 50

 100

 150

 200

 250

 0  50  100  150  200

RT
T 

(m
s)

Time (s)

RTT (ms)

Time (s)

No satellites reachable 
from St.Petersburg

RTT fluctuation: Rio de Janeiro to St. Petersburg
This is without any other traffic in the network

62



RTT (ms)

Time (s)

 0

 50

 100

 150

 200

 250

 0  50  100  150  200

Pings, ComputedRT
T 

(m
s)

Time (s)

Path shortens
Path elongates

RTT fluctuation: Rio de Janeiro to St. Petersburg
This is without any other traffic in the network

63



 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200

NewReno
R

at
e 

(M
bi

t/s
)

Time (s)

Rate (Mbps)

Time (s)

Reordering 
interpreted as loss

Impact on loss-based CC is small
This is without any other traffic in the network

64



 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200

NewReno

Vegas

R
at

e 
(M

bi
t/s

)

Time (s)

Rate (Mbps)

Time (s)

Elongation interpreted 
as queuing

Delay-based CC suffers
This is without any other traffic in the network

65



RTT changes can hamper delay-based CC
Loss-based CC is also problematic

• Typically, able to maintain high rate
• But unlucky flows can suffer

RTT variation and congestion control
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Few link changes per city-pair per minute
But large number of changes network-wide
An uncongested link can suddenly see added traffic

Path structure change has network-wide impact
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Cross-traffic
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Challenge for transport:  fast convergence 

Challenge for TE:  planning across time



Hypatia is only the first step
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in building up research infrastructure for a 
new breed of networks



• What is the LEO hype about?
• Understanding LEO networks
• LEO simulations
• A global testbed & beyond [CCR’21; A Singla]
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Starlink Beta performance reports
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Collected from 
a subReddit

Performance 
varies with

Time

Location

Deployments
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A global LEO measurement testbed

75



A global LEO measurement testbed

• Low-latency application QoE
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A global LEO measurement testbed
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• Low-latency application QoE
• Latency fluctuations due to 

LEO dynamics

Starlink S1 from Delhi  
50x faster than real-time



A global LEO measurement testbed
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• Low-latency application QoE
• Latency fluctuations due to 

LEO dynamics
• Congestion control evaluation
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A global LEO measurement testbed
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• Low-latency application QoE
• Latency fluctuations due to 

LEO dynamics
• Congestion control evaluation
• Multi-access connectivity

High b/w, high latency 
fiber

Low latency, low b/w 
LEO



A global LEO measurement testbed
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• Low-latency application QoE
• Latency fluctuations due to 

LEO dynamics
• Congestion control evaluation
• Multi-access connectivity
• Impact of weather, geometry, 

long-term evolution, etc.



Current participation
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• Microsoft Research
• Azure Space
• Univ. Surrey
• Telefonica

Let’s join hands!
• Reach me at debopamb@microsoft.com
• For LEOCONN WS, subscribe mailing list:  

https://aka.ms/subscribe_LEOCONN

mailto:debopamb@microsoft.com

